Local Weak Ferromagnetism in Single-Crystalline FerroelectricBiFeO3
نویسندگان
چکیده
منابع مشابه
Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3.
Polarized small-angle neutron scattering studies of single-crystalline multiferroic BiFeO(3) reveal a long-wavelength spin density wave generated by ∼1° spin canting of the spins out of the rotation plane of the antiferromagnetic cycloidal order. This signifies weak ferromagnetism within mesoscopic regions of dimension 0.03 microns along [110], to several microns along [111], confirming a long-...
متن کاملInterplay between superconductivity and ferromagnetism in crystalline nanowires
The interaction between superconductivity and ferromagnetism, which entails incompatible spin order, is one of the problems of fundamental interest in condensed-matter physics. In general, when a ferromagnet is placed in contact with a superconductor, the Cooper pairs from the superconductor are not expected to survive beyond at most a few nanometres into the ferromagnet. Here we present a syst...
متن کاملFerromagnetism in ultrathin MoS2 nanosheets: from amorphous to crystalline
Two-dimensional materials have various applications in the next generation nanodevices because of their easy fabrication and particular properties. In this work, we studied the effects of crystalline order on the magnetic properties of ultrathin MoS2 nanosheets. Results indicate that all the fabricated samples show clear room temperature ferromagnetism. The amorphous sample has the larger satur...
متن کاملDirect observation of spontaneous weak ferromagnetism in the superconductor ErNi2B2C.
Neutron measurements show that superconducting ErNi2B2C (T(C) = 11 K) develops antiferromagnetic spin density wave magnetic order (T(N) = 6 K), which squares up with decreasing temperature yielding a series of higher-order magnetic Bragg peaks with odd harmonics. Below T(WFM) = 2.3 K where magnetization indicates a net moment develops, even-order Bragg peaks develop which low field (approximate...
متن کاملWeak d 0 ferromagnetism: Zn vacancy condensation in ZnS nanocrystals.
We provide the explanation of the large discrepancy of three orders of magnitude between the experimentally measured and theoretically calculated magnetic moments in ZnS nanocrystals. We assume that the condensation of Zn vacancies into a single droplet takes place. The energy calculations reveal that the droplet phase is more favorable than the uniformly distributed vacancy configuration. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2011
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.107.207206